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1 Introduction

Since Fama and French (1993), empirical studies searching for new pricing factors have

proliferated. Harvey et al. (2015) show that over 240 factors are reported in literature, not

including those reported in unpublished working papers. This line of research contributed

greatly to our understanding of the cross-section of equity returns. We have learned that

various financial, macro, microstructure, behavioral and accounting variables are related to

the level of expected return of a firm. We have more precise ways to measure the risks in an

asset or fund. We also have numerous ideas for potentially very profitable trading strategies.

Yet, we still try to understand the risks in those trading strategies and, ironically, we still

try to figure out the nature of risk that the size and value factors represent.

Just like any other field in the social sciences, we rely on theories to understand the

investment risks perceived by an investor and the corresponding compensation they expect.

We need to build a model of investors’ investment decisions and test it empirically to verify

our understanding of the components that play an important part in the investment decision-

making process and the implied relationship between risk and return. Along with the progress

in empirical studies, theories have been developed to explain or interpret empirical findings.

Interestingly enough, Merton’s (1973) intertemporal capital asset pricing model (ICAPM) is

still the most frequently cited theory to support a newly discovered empirical factor.1 This

is because the ICAPM can be easily linked to the arbitrage pricing theory (APT) of Ross

(1976) and the linear factor pricing model (the framework in which empirical studies are

done) and the ICAPM is silent on the identity of state variables (hence it imposes very loose

restrictions on the pricing factors).

However, from early on in literature, Fama (1991) criticized the use of the ICAPM as

a fishing license to support empirically motivated factors. Cochrane (2001) also argues that

1The empirical factor, in this paper, refers to a empirically motivated pricing factor that is also empirically
successful.
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one can do much to make sure the candidate state variables really are plausible state variables

for an explicitly stated optimization problem. While the static capital asset pricing model

(CAPM) offers a well-defined and very intuitive investment opportunity set, the original form

of ICAPM in Merton (1973) does not. The relationship between the investment opportunity

set and the state variables that drives the changes of the investment opportunity set are so

general that it is not easy to find meaningful restrictions for identifying the state variables.

In general, a good theory derives general implications with a small set of reasonable

assumptions. However, it is sometimes beneficial to incorporate somewhat strong but

reasonable assumptions to derive restrictive but more intuitive and testable implications.

Campbell (1993) presents a discrete time version of the ICAPM in which the market return

fully describes the investment opportunity set by assuming homoskedastic asset returns and

consumption growth and adopting the log linearization of the budget constraint. Chen

(2003), Sohn (2009), and Campbell et al. (2015) extend Campbell (1993) to accommodate

time-varying volatilities of asset returns and show that the market volatility and the market

return do represent the investment opportunity set. Nielsen and Vassalou (2002) and

Brennan et al. (2004) model random changes in the instantaneous capital market line

(ICML) and show that the investment opportunity set is fully described by the intercept

(i.e., risk-free rate) and the slope (i.e., maximum Sharpe ratio) of the ICML.

In these more restrictive versions of the ICAPM, there are some aggregate variables such

as the market return and the market volatility that represent the investment opportunity set,

and they provide some testable implications on the state variable. Testing these implications

against empirical factors not only verifies the theoretical consistency between the empirical

factors and the ICAPM but also allows us to understand the nature of risk these empirical

factors represent. We learn whether the risk premium of a certain empirical factor is due to

investor concern over the future changes in the market return, the market volatility, or any

other aggregate variable that represents the investment opportunity set.
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Despite such benefits and importance, the time-series test of empirical factors has

received less attention than it probably should because of some empirical difficulties. In

the ICAPM, an empirical factor is supposed to be the innovations to the state variable that

predicts one or more of the aggregate variables that represent the investment opportunity set;

the empirical difficulty in the test arises from the fact that the state variable is unknown and

unobservable in case of the empirical factors. In addition, the multiple aggregate variables

describing the investment opportunity set further complicate the identification problem.

We propose a new time-series test for the empirical factors in the ICAPM framework.

The new method resolves the empirical issues by directly linking the aggregate variable

to the state variable that is reconstructed from empirical factors. We assume that the

unknown and unobservable state variable follows an autoregressive process and invert the

process to an infinite order moving-average process which is essentially a weighted sum of

the empirical factors. Empirically, we adopt the mixed-data sampling (MIDAS) regression

of Ghysels et al. (2002) and Ghysels et al. (2007) to implement the idea and reconstruct the

state variable from the empirical factors. Then, we see if the reconstructed state variable

predicts the aggregate variable. Our new methodology allows us to reconstruct the unknown

state variable and understand the nature of risk in the empirical factor by directly linking the

reconstructed state variable to our choice of aggregate variable for the investment opportunity

set.

With the new test method, we investigate if the risk premiums of size, value, momentum,

and liquidity factors are the compensation to investors’ concern over the future market risk.

Note that no such risk premium would exist if the market return was not predictable at

all. The return predictability literature reports that the monthly market return is hard to

predict with typically very low R2.2 Welch and Goyal (2008) comprehensively reexamine the

performance of well-known predictors of market returns and show that they have predicted

2We are interested in the monthly frequency of the market return because most of the empirical factors are
studied with monthly data. In this case, according to Campbell’s (1993) ICAPM , the factors are supposed
to be the innovations to the monthly state variable that predicts the monthly market return.
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poorly both in-sample and out-of-sample. This implies that innovation to the state variable,

if it exists, would provide very noisy information about future changes in the market return.

Accordingly, we find little evidence that any of the four factors have such information.

The papers that come close to this one, at least in part, are Petkova (2006) and Maio

and Santa-Clara (2012). Petkova (2006) assumes the investment opportunity set is fully

described by the excess market return and the yield curve. In time-series studies, Petkova

(2006) essentially looks at the correlation between the innovations to the predictors for these

variables and the Fama-French factors. In cross-sectional studies, which are her main focus,

Petkova (2006) shows that the innovations to these state variables knock out the Fama-French

factors. However, Petkova (2006) does not consider stock market volatility as one of the

aggregate variables that describe the investment opportunity set. Chen (2003), Sohn (2009),

and Campbell et al. (2015) theoretically show that stock market volatility should be included,

and Ang et al. (2006), Adrian and Rosenberg (2008), and Sohn (2009) strongly support the

idea empirically. When stock market volatility represents the investment opportunity set in

the ICAPM, identifying the state variables becomes much more complicated, as we discuss

later in this paper and in Maio and Santa-Clara (2012). This is because a good predictor for

market return is likely to be a good predictor for market volatility, as shown theoretically

by Mele (2007) and empirically by Christiansen et al. (2012). Under such circumstances,

Petkova’s (2006) approach cannot distinguish whether the Fama-French factors are priced

because of their information about the future market return, future market volatility, or

both.

Maio and Santa-Clara (2012) adopt a very rough measure for the state variable without

any theoretical or econometric background: the empirical factor f is approximately the first

difference of the state variable X, i.e., ft ≈ ∆Xt = Xt −Xt−1. If the empirical factors are

innovations to the state variable as the ICAPM suggests, the specification implies that the

state variable is a random walk with a unit root. Maio and Santa-Clara (2012) run a series

of long-horizon predictive regressions in which the concern for the spurious regression arises
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in this case. Also, the state variable specifications in Maio and Santa-Clara (2012) for the

momentum and liquidity factors are exactly nested in our approach and roughly nested for

the size and value factors. Our parameter estimates tell us a different story.

The next section discusses the relationship between the investment opportunity set and

the aggregate variables that describe the investment opportunity set. Section 3 discusses the

relationship between the state variable and pricing factors and presents the characteristics of

a good potential state variable. Section 4 describes the empirical difficulties in understanding

empirical factors in the ICAPM framework, which motivates the development of our new

time-series test. Section 5 develops the new time-series test of the empirical factors within

the ICAPM framework. Section 6 provides the empirical results using the market return as

the aggregate variable. Finally, Section 7 concludes.

2 The ICAPM and Aggregate Measures for the

Investment Opportunity Set

The key idea of the ICAPM is the recognition of the risks in the time-varying investment

opportunity set available to investors. Originally in Merton (1973), the changes in the

investment opportunity set are driven by a set of unidentified state variables. In response,

investors would hold hedging portfolios to minimize the impact of the unexpected future

changes in the investment opportunity set on their portfolios.

In the static CAPM, the investment opportunity set is constant, so it is easy to identify

the boundary or frontier of the investment opportunity set relevant for investment decisions;

the risk-free rate and the market risk premium fully describe the capital market line. On the

other hand, Merton’s (1973) ICAPM does not allow such a simple characterization of the

investment opportunity set. The state variables X in Merton’s (1973) ICAPM are defined

as the common variables that drives the variations of the instantaneous mean returns and
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volatilities of the instantaneous return processes for individual risky assets:

dPi

Pi

= αi(X, t)dt+ σi(X, t)dzi (2.1)

dX = F (X)dt+G(X)dQ (2.2)

where Pi is the price of a risky asset i which follows an Ito process with a Wiener process dzi.

The m-dimensional state variable vector X also follows an Ito process where F is a vector

process (f1, f2, ..., fm)
T , G is a diagonal matrix with diagonal elements (g1, g2, ..., gm), and

dQ is the vector Wiener process (dq1, dq2, ..., dqm)
T . In Merton’s (1973) fairly general setup,

a sufficient set of statistics for the investment opportunity set at a given point in time is:

{αi, σi, ρij} (2.3)

where ρij is the instantaneous correlation between the Wiener processes dzi and dzj. Unlike

the case with the static CAPM, the investment opportunity set shown in Equation (2.3)

cannot be fully described by a small set of aggregate variables such as the market risk

premium or the risk-free rate. Thus, the restrictions that we can put on the state variables

(which determine the investment opportunity set) for their identification must be pretty

loose, which is why it is difficult to identify the state variables in Merton’s (1973) ICAPM.

Naturally, stronger assumptions allow stronger and more intuitive implications.

Campbell (1993) first came up with a meaningful restriction for identifying state variables.

Assuming that variation in the consumption-wealth ratio is small and the conditional joint

distribution of asset returns and consumption is homoskedastic, Campbell (1993) shows

that the market return is an important aggregate variable that describes the investment

opportunity set; investors try to hedge against unexpected changes in the future market

return and news about the future market return becomes a legitimate pricing factor.

Accordingly, the variables that are shown to forecast the market return should be chosen as
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the state variables.

There are papers suggesting multiple aggregate variables describing the investment

opportunity set. Chen (2003), Sohn (2009), and Campbell et al. (2015) extend Campbell

(1993) to accommodate time-varying volatilities of asset returns and show that market

volatility should also play an important role in describing the investment opportunity set

relevant to investors’ investment decisions. Nielsen and Vassalou (2002) and Brennan et al.

(2004) model random changes in the ICML as driven by a number of state variables, which

are independent Wiener processes, rather than directly model dynamics of asset returns.

They further assume that the optimal portfolio on the ICML is a combination of the hedge

portfolios and show that the investment opportunity set is fully described by the intercept

(i.e., risk-free rate) and the slope (i.e., maximum Sharpe ratio) of the ICML.

In this paper, we use the term “aggregate measure” to refer to the aggregate variable,

e.g., the market return or the market volatility, that describes the investment opportunity

set under a certain set of assumptions on a version of ICAPM. A different set of assumptions

results in different implications on the aggregate measures that represent the investment

opportunity set relevant to investors’ decisions on the optimal portfolios. However, in all of

these variants of the ICAPM, including the ICAPM of Merton (1973) itself, the asset returns

are locally normal or lognormal and this makes investors mean-variance optimizers under

fairly general conditions. Thus, it is not surprising that the aggregate measures describing the

investment opportunity set are related to the capital market line of the static CAPM. These

aggregate measures help us identify the state variables since the state variables are supposed

to predict the future investment opportunity set described by the aggregate measures.
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3 The State Variables and Pricing Factors

Regardless of the differences across models, the key results of the various versions of

the ICAPM are driven by the time-varying investment opportunity set, which introduces

additional systematic risks on the top of the market risk inherited from the static CAPM.

The state variables are those forecasting these future changes in the investment opportunity

set and, hence, the news on the future state variables carries information about the future

changes in the investment opportunity set; the innovations to the state variables are the

legitimate pricing factors within the ICAPM framework.

Sohn (2009) extends Campbell (1993) to allow heteroskedastic asset returns and provides

a good example of a pricing equation that shows the relationship between the risk premium

of an asset and innovations to the state variables:

Et[ri,t+1 − rf,t+1] +
Vii,t

2
= γVim,t + (γ − 1)Vih,t −

(γ − 1)2

2(σ − 1)2
Viη,t (3.1)

where γ, σ, ri,t+1 and rf,t+1 are the coefficient of relative risk aversion, elasticity of

intertemporal substitution, log return of asset i and risk-free asset, respectively. And,

Vii,t=V art(ri,t+1), Vim,t=Covt(ri,t+1, rm,t+1), and, in particular:

Vih,t = Covt

(
ri,t+1, (Et+1 − Et)

∞∑
j=1

ρjrm,t+1+j

)
(3.2)

and

Viη,t = σ2 Covt

(
ri,t+1,

[
Et+1 − Et

] ∞∑
j=1

ρjV art+j[rm,t+j+1]
)

(3.3)

where ρ is a constant that comes from the log-linearization of the budget constraint.

Equations (3.2) and (3.3) show that the market return and the market variance describe

the investment opportunity set, and imply that there is a trading demand in investors’
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perspectives to hedge out the unexpected changes in the investment opportunity set. The

news on the future value of these variables is the pricing factor implied by the model in

Sohn (2009). Ang et al. (2006) and Adrian and Rosenberg (2008) provide strong empirical

supports for this idea by showing that the innovation to the market volatility is strongly and

robustly priced across assets. The market volatility as an additional aggregate measure will

be used as an example to show the complexity that the multiple aggregate measures would

bring about in testing and understanding the empirical factors in the ICAPM framework.3

For an empirical implementation, Campbell (1993) suggests the Verctor Autoregressive

(VAR) factor model. Without loss of generality, the K-dimensional state vector process zt

is assumed to follow the VAR process of the order one:

zt+1 = Azt + ϵt+1 (3.4)

where the first two elements of zt are the market return and the estimate of market variance.

Using the VAR model specified in Equation (3.4), we can rewrite part of Equations (3.2)

and (3.3):

(Et+1 − Et)
∞∑
j=1

ρjrm,t+1+j = e′1ρB(I − ρB)−1ϵt+1 (3.5)

(Et+1 − Et)
∞∑
j=1

ρj v̂m,t+1+j = e′2ρB(I − ρB)−1ϵt+1 (3.6)

where v̂m,t is the conditional variance of the market return (i.e., market variance estimate)

at time t, and e1 is a vector with a first element of one and other elements are all zero. e2

is defined similarly. Following the terminology from Campbell (1993), the left-hand side of

Equations (3.5) and (3.6) would be termed as the news on the market return and the market

volatility, respectively.

For a more intuitive understanding of the relationship between the state variables and

3We will use the market variance and the market volatility interchangeably.
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the pricing factors, we consider the following example processes for the demeaned state

variables:4

rm,t+1 = b
(m)
d dyt + ϵ

(m)
t+1 (3.7a)

vm,t+1 = b(v)v vm,t + b(v)p mpt + ϵ
(v)
t+1 (3.7b)

dyt+1 = b
(d)
d dyt + ϵ

(d)
t+1 (3.7c)

mpt+1 = b(p)p mpt + ϵ
(p)
t+1 (3.7d)

where rm,t, vm,t, dyt, and mpt are the market return, market variance, dividend yield and

the growth rate in industrial production, respectively. For an easy and intuitive notation,

b
(y)
x denotes the coefficient for the predictor (regressor) x in the predictive regression for

(regressand) y. The first two dependent variables, rm,t and vm,t, describe the investment

opportunity set, and the remaining two variables, dyt and mpt, are the state variables (i.e.,

predictors) for rm,t+1 and vm,t+1, respectively. Both of these state variables follow AR(1)

processes. As is well known from literature on stock market volatility, market volatility is

persistent and has its lagged market volatility as a predictor in addition to the growth rate

in industrial production.

Then, from Equations (3.5) and (3.6), we obtain the equation for the news on the

aggregate measures, market return and market volatility:

(Et+1 − Et)
∞∑
j=1

ρjrm,t+1+j =
ρb

(m)
d

1− ρb
(d)
d

ϵ
(d)
t+1 (3.8)

(Et+1 − Et)
∞∑
j=1

ρj v̂m,t+1+j =
ρb

(v)
v

1− ρb
(v)
v

ϵ
(v)
t+1 +

[
ρ2b

(v)
v b

(v)
p

(1− ρb
(v)
v )(1− ρb

(p)
p )

+
ρb

(v)
p

1− ρb
(p)
p

]
ϵ
(p)
t+1 (3.9)

4The state variables are demeaned for the simplicity and brevity of the theoretical arguments that follow.
However, the same results hold even with the original variables.
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and, the corresponding expected return-beta relationship would be

Et[ri,t+1 − rf,t+1] +
Vii,t

2
= γ Covt(ri,t+1, rm,t+1) (3.10)

+ (γ − 1)
ρb

(m)
d

1− ρb
(d)
d

Covt(ri,t+1, ϵ
(d)
t+1)

− σ2(γ − 1)2

2(σ − 1)2
ρb

(v)
v

1− ρb
(v)
v

Covt(ri,t+1, ϵ
(v)
t+1)

− σ2(γ − 1)2

2(σ − 1)2

[
ρ2b

(v)
v b

(v)
p

(1− ρb
(v)
v )(1− ρb

(p)
p )

+
ρb

(v)
p

1− ρb
(p)
p

]
Covt(ri,t+1, ϵ

(p)
t+1)

where we can directly observe that rm,t, ϵ
(d)
t , ϵ

(v)
t , and ϵ

(p)
t are the factors that determine the

time-varying betas of the asset i. Together with the price of risks, they explain the risk

premium for the asset i.

To begin with, Equation (3.10) verifies the basic idea of the ICAPM that the innovations

to the predictors (or state variables) for the aggregate measures describing the investment

opportunity set are the pricing factors. The innovation to the dividend yield is a systematic

risk factor that represents the risk of unexpected changes in the market return. Both the

innovations to the market variance and the growth rate in the industrial production are the

systematic risk factors that represent the risk of unexpected changes in the market volatility.

Most importantly, Equations (3.8)-(3.9) give us hints about the characteristics of a good

state variable in the ICAPM. First, news about the aggregate measures is mainly driven

by the innovation to the persistent state variables, which is good because the empirical

literature so far has found that most of the well-known predictors for market return or

market volatility are persistent. It implies that the innovations to a persistent state variable

would play an important role in pricing assets. To put it another way, among the many that

predict aggregate measures, an important state variable for pricing assets would be the one

with persistence. This comes from the fact that the denominators of all the coefficients for

the innovations (i.e., ϵt+1 in Equations (3.8) and (3.9)) to the state variables are composed

12



of (1− ρb
(y)
y ) where b

(y)
y is the coefficient of the AR(1) state variable process. Note that:

b(y)y =
Cov(yt+1, yt)

V ar(y)
= Corr(yt+1, yt) = acf(y, 1) < 1 (3.11)

where acf(y, 1) denotes the first-order autocorrelation function of y.5 A persistent process

of AR(1) has a high serial correlation, which would make (1− ρb
(y)
y ) very small; this would

also make the news on an aggregate measure very sensitive to innovation to the persistent

state variable.

Second, innovation to the state variable with good forecasting power on the aggregate

measure for the investment opportunity set is an important pricing factor. This is because

the numerators of the coefficients for innovations to state variables in Equations (3.8) and

(3.9) are determined by the coefficients for the state variables in the predictive regressions

in Equations (3.7a) and (3.7b). The coefficients in the predictive regressions, for example in

Equation (3.7a), can be seen as:

b
(m)
d =

Cov(rm,t+1, dyt)

V ar(dyt)
= Corr(rm,t+1, dyt)

STD(rm,t+1)

STD(dyt)
(3.12)

High correlation in Equation (3.12) (i.e., good forecasting power) leads to large coefficients

in predictive regressions and large coefficients in Equation (3.8).

In the ICAPM, the unexpected future changes in the investment opportunity set are

the key systematic risks, and state variables drive these changes. Thus, innovations to the

state variables carry information about future changes in the investment opportunity set

and become the legitimate pricing factors under the ICAPM framework. In light of this, an

ideal state variable in the ICAPM would have the following properties: (i) [Predictability]

basically, a good state variable is a good predictor for an aggregate measure of investment

opportunity set, in which case innovation to the state variable would have much information

5We assume that vm,t and mpt are uncorrelated for the sake of brevity of the theoretical arguments.
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about future unexpected changes in the aggregate measure; and (ii) [Persistence] persistence

makes a state variable a good one, ceteris paribus, because it makes the state variable more

predictable, so its innovation contains more precise information about future changes in the

aggregate measure. Accordingly, innovations to the state variables with the above properties

make strong legitimate pricing factors in the ICAPM.

Aside from the characteristics of a good state variable, several other interesting points

can be learned from this simple exercise. First, the sign of correlation between news

on the aggregate measure for the investment opportunity set and the innovations to the

corresponding state variable is determined by the sign of the correlation between the

aggregate measure and the lagged state variable itself. In other words, the signs of the

coefficients for the innovation ϵ
(s)
t+1 in Equations (3.8) and (3.9) are solely determined by b

(A)
s

where ‘A’ stands for an aggregate measure and ‘s’ the corresponding state variable. This

sheds some light on the information about news on the aggregate measure embedded in the

state variable innovation. For example, suppose the dividend yield positively predicts the

market return in Equation (3.7a); i.e., b
(m)
d > 0. Then, the innovation to the dividend yield

also positively correlates with the news on the market return in Equation (3.8), which implies

that unexpected increase in the dividend yield would be likely to accompany the increase in

market return. The sign relationship is due to the observation that the sign of (1 − ρb
(y)
y )

is positive and hence the sign of coefficients for the innovations to the state variables in

Equations (3.8) and (3.9) are solely determined by the sign of the numerators.6

Second, the sign of the price of risk for each of the innovations to the state variables in

Equation (3.10) is determined by the sign of the coefficient from the corresponding predictive

regression between the aggregate measure and state variable.7 For all the risk premium

terms related to the hedging demand in Equation (3.10), the sign of the price of risk is solely

6ρ is not a discount factor but a coefficient from the loglinearization of the budget constraint. However,
it is known to be numerically similar to a discount factor; the value of ρ is close to but less than one.

7We assume that the reasonable value for the coefficient of relative risk aversion (γ) is larger than 1.
Numerous studies assume that the reasonable value of γ is around 7 and report that the empirical estimate
is a lot higher.
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determined by b
(A)
(s) where ‘A’ stands for an aggregate measure and ‘s’ a corresponding state

variable because the rest of the components for the price of risk are all positive.8 In Equation

(3.10), if the dividend yield positively predicts the market return, the price of risk for the

innovation to the dividend yield would be also positive. On the other hand, if industrial

production growth positively predicts market volatility, the corresponding price of risk is

negative. Interestingly, if a state variable positively predicts both the market return and

market volatility, innovation to the state variable would command a positive risk premium

for the future market risk and a negative risk premium (or risk discount) for future market

uncertainty; the innovation to such a state variable can have a positive, negative, or nil price

of risk depending on the size of the price of risk on the future market risk and the future

market uncertainty.

Lastly, the state variable dynamics in Equations (3.7a)-(3.7d) and the pricing equation

in Equation (3.10) help us understand why the literature on cross-section of equity returns

reports so many empirical factors, as is pointed out in Harvey, Liu, and Zhu (2015). The

market volatility process in Equation (3.7b) has two predictors, vm,t and mpt, and the pricing

equation in Equation (3.10) shows that each of the innovations to these two predictors

commands separate risk premiums even though both innovations are priced for the same

reason: they have information about the future changes in the market volatility. This

implies, in general, all the innovations will be separately priced if each of the state variables,

from which the innovations come from, has independent predictive power over an aggregate

measure of the investment opportunity set. To put it differently, an empirical finding that

some two factors survive in cross-sectional regression together does not imply that these

two factors represent two different systematic risks. It can be that both factors represent

the same kind of risk, say the future market uncertainty, but have independently useful

information on future changes in market volatility.

8b
(v)
(v) is positive because the market volatility is persistent.
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4 Understanding Empirical Pricing Factors

As shown in Harvey et al. (2015), there are more than 240 factors reported in the literature

on the cross-section of equity returns. Most of them are empirically motivated and, not

surprisingly, the most empirically successful factors are this kind. Many of these papers

cite Merton’s (1973) ICAPM to provide a theoretical foundation without providing specific

description of the investment opportunity set or state variables. From early on in the

literature, Fama (1991) criticized the use of the ICAPM as a fishing license to support

the empirically motivated factors.

The loose link between an empirically motivated factor and the ICAPM is a problem

partly because the state variable in the ICAPM is not really free and there are restrictions

on the state variable imposed by the ICAPM, but most importantly because it does not

allow us to understand what systematic risk the empirically motivated factor represents.

Cochrane (2001) argues that one could do a lot to insist that the factor-mimicking portfolios

are the projections of some identifiable state variables on the space of returns, and much can

be done to make sure the candidate state variables really are plausible state variables for an

explicitly stated optimization problem.

Numerous papers try to provide risk-based explanations for empirically successful yet

empirically motivated factors such size, value, and momentum. The first line of this research

naturally focused on the relationship between the factors and important macroeconomic

or financial variables such as default premium, term spread, GDP growth and industrial

production growth. The papers do not provide further theoretical restrictions on the state

variables than Merton’s (1973) ICAPM and, hence, implicitly assume the time variations

of the sufficient statistics in Equation (2.3) are driven by their choice of macroeconomic

or financial variables (the state variables in the context of ICAPM). Since the dependency

relations are at the individual stock level, it is hard to show if these state variables determine

the return dynamics of every individual asset in the market, and these papers are typically
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silent on this. More importantly, if the empirically successful factors do proxy the innovation

to these macroeconomic or financial variables, then the innovations to these macroeconomic

or financial variables themselves should be priced across assets, which brings us back to Chen

et al. (1986). However, as shown by Shanken and Weinstein (2006), most of these are not

robust or not priced at all except for industrial production growth.

Campbell (1993) shows that the market return sufficiently summarizes the investment

opportunity set necessary for the investment decision under the assumption of homoskedatic

asset returns. In Campbell’s (1993) discrete time version of the ICAPM, the state variables

should be chosen such that they predict the market return. Thus, the empirically successful

factors should proxy the innovations to the predictors of the market return. To cope with the

critiques from Fama (1991) and Cochrane (2001), it is very important to look into the time-

series relations between the investment opportunity set and the chosen state variables. It is

important because they are the ICAPM’s restrictions on the state variables and because they

are the sources of concern for investors; the market return as the relevant summary statistics

for the investment opportunity comes from individual portfolio optimization problem exactly

as the recommendation from Cochrane (2001).

Understanding the empirical factors within the ICAPM framework is not a

straightforward or easy task. First of all, according to Campbell (1993), these empirical

factors are supposed to be the innovations to some unknown and unobservable state variable

that predicts the market return. It is very difficult to show empirically that the empirical

factors proxy the innovations to a variable that is unknown and predicts the market return.

Second, another empirical difficulty in understanding the empirical factors in Campbell’s

(1993) ICAPM framework is that the market return is not very predictable. Welch and

Goyal (2008) reexamine the performance of variables that have been well known to predict

the market return and find that they have predicted poorly both in-sample and out-of-

sample. As is shown in Equations (3.5) and (3.8), the innovations to the predictor of the
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market return should contain information about the news on the market return. However,

considering the typical low R2 reported in return predictability literature, it is very likely

that innovations to the state variable carry very noisy information about news on the market

return, and it would be even harder to link the empirical factors to these noisy innovations.

Third, multiple aggregate measures that describe the investment opportunity set further

complicate the empirical difficulties in understanding the nature of risk the empirical factors

represent. It is almost natural that the variance of the market return becomes another

aggregate measure when heteroskedastic asset returns are allowed in Campbell’s (1993)

ICAPM as shown in Chen (2003), Sohn (2009) and Campbell et al. (2015). The addition

further complicates our attempt to understand the empirical factors especially when the

market return and market volatility share the same predictors. This is indeed true as shown

theoretically by Mele (2007) and empirically by Christiansen et al. (2012). To incorporate

the idea and analyze its effect on the pricing factors, we can change the VAR state variable

dynamics in Equations (3.7a)-(3.7d) as follows:

rm,t+1 = b(m)
c ct + ϵ

(m)
t+1 (4.1a)

vm,t+1 = b(v)v vm,t + b(v)c ct + ϵ
(v)
t+1 (4.1b)

ct+1 = b(c)c ct + ϵ
(c)
t+1 (4.1c)

where ct is the common predictor for the market return and market volatility. Then, the

corresponding pricing factors are:

(Et+1 − Et)
∞∑
j=1

ρjrm,t+1+j =
ρb

(m)
c

1− ρb
(c)
c

ϵ
(c)
t+1 (4.2)

(Et+1 − Et)
∞∑
j=1

ρj v̂m,t+1+j =
ρb

(v)
v

1− ρb
(v)
v

ϵ
(v)
t+1 +

[
ρ2b

(v)
v b

(v)
c

(1− ρb
(v)
v )(1− ρb

(c)
c )

+
ρb

(v)
c

1− ρb
(c)
c

]
ϵ
(c)
t+1 (4.3)

It should be noted that the news on both the market return and market volatility is
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correlated with the innovations to the common predictor ct. This implies that innovations

to the common predictor ct have information about news on both aggregate measures.

Consequently, the fact that a good market return predictor is highly likely to also be a

good market volatility predictor makes it even harder to identify the nature of risk the

empirical factors represent. Suppose an empirical factor proxies the innovations to the state

variable that predicts the market volatility. The factor would correlate with the innovations

to the common predictor ct since the innovations contain news on both the market return and

market volatility. However, the correlation does not imply that the factor proxies the news

on the market return. Hence, for an empirical factor that is correlated with the innovation

to the common predictor, we cannot tell if the empirical factor has information about the

future changes in the market return or the market volatility.

Fourth, the cross-sectional regressions are not very helpful in distinguishing the two

sources of risk because innovations to the common predictor ct would also command a

premium on both systematic risks as follows:

Et[ri,t+1 − rf,t+1] +
Vii,t

2
(4.4)

= γ Covt(ri,t+1, rm,t+1)

− σ2(γ − 1)2

2(σ − 1)2
ρb

(v)
v

1− ρb
(v)
v

Covt(ri,t+1, ϵ
(v)
t+1)

+

[
(γ − 1)

ρb
(m)
c

1− ρb
(c)
c︸ ︷︷ ︸

price of future market risk

− σ2(γ − 1)2

2(σ − 1)2

[
ρ2b

(v)
v b

(v)
c

(1− ρb
(v)
v )(1− ρb

(c)
c )

+
ρb

(v)
c

1− ρb
(c)
c

]
︸ ︷︷ ︸

price of future market volatility risk

]
Covt(ri,t+1, ϵ

(c)
t+1)

As briefly discussed in Section 3, the sign of the price of risk on the innovation to the

common predictor ct can be positive, negative, or even zero. The fact that the innovation

(factor) to the common predictor, e.g., dividend yield, knocks out an empirical factor in

the cross-sectional regression does not allow us to say whether the empirical factor has

the pricing information subsumed in the news for the market return or market volatility
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unless we examine the signs of b
(m)
c and b

(v)
c at the least. Suppose an empirical factor has a

positive price of risk. The positive price of risk in Equations (3.10) and (4.4) implies three

possibilities: the unknown state variable X, to which the empirical factor is the innovation

(1) predicts the market return only and b
(m)
X > 0; (2) predicts the market volatility only and

b
(v)
X < 0; or (3) predicts both and (i) b

(m)
X > 0, b

(v)
X < 0, or (ii) b

(m)
X > 0, b

(v)
X > 0 and:

(γ − 1)
ρb

(m)
X

1− ρb
(X)
X

>
σ2(γ − 1)2

2(σ − 1)2

[
ρ2b

(v)
v b

(v)
X

(1− ρb
(v)
v )(1− ρb

(X)
X )

+
ρb

(v)
X

1− ρb
(X)
X

]
(4.5)

Since the innovation to the common predictor contains news on both the future market

return and the future market volatility and also commands the risk premiums for both, we

cannot distinguish the above three cases even if the innovation knocks out the empirical

factor in the cross-sectional regression. Examining the signs of b
(m)
c and b

(v)
c to see if they are

consistent with the cases above might be helpful in distinguishing the three cases. However,

if it turns out b
(m)
c > 0, b

(v)
c < 0, then we cannot tell the difference between the three because

the signs imply the prices of risk for both the future market return and the future market

volatility are positive. Hence, it is best to reconstruct the unknown state variable itself to

which the empirical factor is the innovation and check the statistical significance of b
(m)
X and

b
(v)
X . This again shows the importance of the time-series test in understanding the nature of

risk the empirical factor represents.

Despite its importance, the time-series test on the empirical factors to discover their

relation to the state variable, which is subject to restrictions from the ICAPM has received

less attention than it should because of the various empirical difficulties discussed so far.

A few good papers actually try to address this in their time-series studies to check if the

empirical factors meet the restrictions. Petkova (2006) and In and Kim (2007) basically

investigate the correlation between the empirically successful factors (SMB and HML) and

the innovations to a set of well-known predictors of the market return. However, the

examination of the correlation alone will not get us far because of the issues we have discussed
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in this section. Petkova (2006) also carries out cross-sectional studies but, for the same

reason discussed previously, the results do not really allow us to distinguish the two sources

of systematic risk for the empirical factors in the presence of the market volatility as an

aggregate measure.

Maio and Santa-Clara (2012) try to reconstruct the original predictor (or the state

variable) by summing up the factors. The reconstructed state variable would be similar to

the cumulative return on the zero-cost portfolio following the strategies of SML and HML.9

However, the simple aggregation of some innovation series would be a random walk, which

would also have a unit root. The long-horizon predictive regression with such a variable as

a regressor would likely lead to a spurious regression, which would further complicate the

empirical test.

With their estimates of the state variables Xt, Maio and Santa-Clara (2012) examine

the consistency within the ICAPM between the sign of the coefficient from the predictive

regression (b
(m)
X and b

(v)
X ) and the sign of the corresponding price of risk. However, they

discuss it separately for the two different aggregate measures of the market return and

market volatility. Since they derive their sign implications from the ICAPM, relying on

just intuition but without any rigorous theoretical background and do it separately for the

two aggregate measures, their framework does not show the complexity in the signs in the

presence of the common predictor as we discuss here.

5 Direct Time-Series Test

If there is a single aggregate measure for the investment opportunity set, it would be easier

(relatively) to investigate if an empirical pricing factor could be understood in the ICAPM

9Maio and Santa-Clara (2012) obtain the state variable Xt for liquidity and momentum factors by
summing of the corresponding factors over 60 months: Xt =

∑t
s=t−59 fs. They use a different approach for

the size and value factors, but, essentially the approach is the same as the previous one in the sense that
SMBt ≃ ∆Xt(SMB) and HMLt ≃ ∆Xt(HML).
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framework. However, if there are multiple aggregate measures and some state variables are

common predictors for some of them, it is not so clear empirically how to relate the empirical

factor to the aggregate measure in the investors’ optimization problem as was suggested by

Cochrane (2001). The ICAPMs of Chen (2003), Sohn (2009) and Campbell et al. (2015) are

typical examples of this, where the market volatility makes another aggregate measure.

We will develop an empirical methodology that allows us to directly link an empirical

factor to a specific aggregate measure for the investment opportunity set. Recall the

discussion from the previous section that the empirical difficulty of our task comes from

the fact that the empirical factor of interest is an innovation to an unknown predictor (or

state variable) of an aggregate measure. We reconstruct the unknown state variable from

the empirical factor with an assumption that the state variable follows a certain stochastic

process. We first assume that the state variable follows an AR(1) process and then try to

accommodate more general processes.

Our assumption of the process of the state variable is consistent with our discussion of the

state variable in Section 3 and backed by numerous papers in return predictability literature.

All the market return predictors examined in Welch and Goyal (2008) are persistent and well

described by the AR(1) process. Accordingly, they determine the statistical significance of

the predictability by F -statistics from bootstrapping which assumes an AR(1) process for

all the predictors. Conrad and Kaul (1988) investigate the stochastic nature of expected

returns and find the variation through time in expected returns is well characterized by

an AR(1) process. Koijen and van Binsbergen (2010) propose a latent variable approach

within a present-value model to estimate the time series of expected returns and expected

dividend growth rates of the aggregate stock market. They model both expected returns and

expected dividend growth rates as an AR(1) process, and find that these are good predictors

of realized returns and realized dividend growth rates.

To reconstruct the state variable from its innovations, we use the moving average
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representation of AR(1) process. When the state variable process that is supposed to follow

AR(1) is converted into the moving average process, the state variable can be represented

with its innovation which is the corresponding pricing factor. Then, the predictive regression

for the aggregate measure on the moving average representation of the state variable with

the empirical factor is estimated with the MIDAS regression of Ghysels et al. (2002) and

Ghysels et al. (2007) to see the statistical significance of the prediction relation.

5.1 MIDAS Regression

A MIDAS regression model generalizes a distributed lag model to accommodate time-series

data sampled at different frequencies. For the scope of this paper, it is sufficient to adopt a

distributed lag model to estimate and reconstruct the state variable from empirical factors.

However, we would like to stay open to further extension that incorporates higher frequency

data even though we do not cover it here. Also, a technically similar application of the

MIDAS regression is successfully used in investigating the risk-return tradeoff in Ghysels

et al. (2005) and the volatility forecasting in Ghysels et al. (2006).

The MIDAS regressions are essentially tightly parameterized, reduced-form regressions

that involve processes sampled at different frequencies. A simple linear MIDAS regression

takes the form of:

Yt+1 = b0 + b1B(L1/m)Z
(m)
t + ε

(m)
t+1 (5.1)

where B(L1/m) =
∑J

j=0B(j)Lj/m is a polynomial of length J in the L1/m operator, and

Lj/mZt = Zt−j/m. m represents the frequency of data sampling for Z. Suppose that Yt is

sampled at some fixed, say monthly, sampling frequency. Then, Z(m) is sampled m times

faster, so Z(22) is sampled daily when the average number of trading days in a month is 22.10

Two most important decisions that should be made to implement the MIDAS regression

10For our current purposes in this paper, we can fix m = 1, which leads to a typical distributed lag model;
the data frequency is fixed at a month.
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model in Equation (5.1) are the order and the structure of the polynomial B(L1/m).

As will be further discussed in the next subsection, we will apply the MIDAS regression

model to an infinite order moving average process, which implies, in theory, the length of

the polynomial, J , is infinite. However, we also know from the stationarity condition that

the coefficients for the series of shocks in the infinite order moving average process should

eventually be time-decaying. Thus, we may set J a finite number and ignore the shocks that

come after that lag.

Our choice of the structure for the lag polynomial is based on its flexible ability to

accommodate various inverted infinite order MA processes. We choose the exponential

Almon lag polynomial introduced in Ghysels et al. (2007):

B(L; θ) =
J∑

j=0

exp (θ1j + ...+ θKj
K)

Se

Lj (5.2)

where

Se =
J∑

i=0

exp (θ1i+ ...+ θKi
K) (5.3)

Note that the coefficients are normalized such that the sum of them will be one. For our

current setup, it is good enough to set m = 1.11 The choice of K determines the flexibility

of the lag structure (or weighting scheme) that can be represented by Equation (5.2). As

you increase K, you have more terms and parameters in the exponential function. The lag

polynomial with lower K is nested in the one with the higher K. The simplest form with

K = 1 has exponentially time-decaying weights and will be used in Section 5.2. To deal

with more general state variable processes, Section 5.3 will adopt the weighting scheme with

K = 2. Figure 1 shows the various lag weighting structures the exponential Almon lag

polynomial can take with different sets of parameters. The parameter choices of (1) and (3)

in the figure have increasing weights and, hence, are not appropriate for stationary infinite

11Our choice of the frequency of data sampling (i.e,, m=1) implies that we have the same data sampling
frequency on both sides of Equation (5.1): monthly data.
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order MA processes. The shapes of weighting structure in (2) and (4) in Figure 1 seem

appropriate for our purpose; the former has a single hump-shaped weighting scheme and the

latter has monotonically decreasing weights.12

5.2 The State Variable Follows an AR(1)

In the ICAPM framework, the empirical factors are supposed to be the innovations to the

state variables that predict some aggregate measures that describe the relevant investment

opportunity set as shown in Equations (3.7a)-(3.9) and Equations (4.1a)-(4.3). To apply

the empirical methodology developed here, the investment opportunity set related aggregate

measures need not be the ones discussed in Section 3 or Section 4. Depending on a set of

assumptions, a version of the ICAPM has a different set of the aggregate measures as in

Nielsen and Vassalou (2002) and Brennan, Wang, and Xia (2004). As long as there is an

aggregate measure and a set of state variables is supposed to predict the aggregate measure,

we can use the method to see if an empirical factor represents the systematic risk related to

the aggregate measure that comes from investors’ optimization problems.

Let At and Xt be an aggregate measure for the investment opportunity set at time

t and a state variable at time t that has the predictive power for the aggregate measure,

respectively, as follows:

At+1 = a0 + a1Xt + ϵAt+1 (5.4)

with the assumption that the state variable follows an AR(1) process:

Xt+1 = ϕXt + ϵXt+1 (5.5)

where Xt is demeaned for simplicity of the argument. Under some regularity conditions, an

12The signs of θ1 and θ2 do not completely determine the shape of a weighting scheme. For the complete
description of the weighting scheme, one needs to take into account the quadratic functional features of the
weighting scheme and the finite number of lags.
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AR(1) can always be expressed as an MA(∞):

Xt =
∞∑
i=0

ϕiϵXt−i (5.6)

Then, we can substitute this back into Equation (5.4) to obtain:

At+1 = a0 + a1

∞∑
i=0

ϕiϵXt−i + ϵAt+1 (5.7)

Note that ϵX is the innovation to the state variable X and is supposed to be the pricing

factors, fX , related to the aggregate measure A. For a more intuitive representation, we

replace ϵX with fX :

At+1 = a0 + a1

∞∑
i=0

ϕifX
t−i + ϵAt+1 (5.8)

The parameters a0, a1 and ϕ can be estimated with the MIDAS regression as specified in

Equations (5.1) and (5.2) with K = 1 when:

a0 = b0, a1 =
b1
Se

, ϕ = eθ1 (5.9)

Hence, for a given aggregate measure A and an empirical factor fX , the model in Equation

(5.8) can be estimated and we can see if the parameter a1 is statistically significant to

determine whether the empirical factor represents the systematic risk related to the aggregate

measure. It should be noted that the application of the MIDAS regression model implies

that the estimated ϕ is restricted to be positive (see Equation (5.9)). Note that ϕ is not

only the weight of the empirical factors as in Equation (5.8) but also the coefficient for

the AR(1) process for the state variable as in Equation (5.5). Recall our discussion on the

characteristics of an ideal state variable in Section 3. One of them was persistence and the

positivity of ϕ is consistent with this property.
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5.3 More General State Variable Processes

The structure of the lag polynomial we adopted is quite flexible and the MIDAS regression

of innovations can represent various infinite order MA processes exactly and sometimes

approximately. One of these processes of interest to us is the infinite order MA representation

of the AR(2) process. The analysis with the state variable process following AR(2) itself is

interesting, but also extends our analysis in Section 5.2 in the sense that it addresses the

issues with autocorrelated innovations (factors).

The way the ICAPM interprets the empirical factors is that they are innovations to

some state variables, and, as in Equation (5.8), they are treated as innovations with no

autocorrelation. However, in practice, some empirical factors show small but statistically

significant serial correlation.

Consider a case in which a state variable follows AR(1) but the innovations are

autocorrelated:

Xt+1 = ϕXt + ϵXt+1 (5.10a)

ϵXt+1 = δϵXt + ut+1 (5.10b)

where ut is white noise. Then, it can be easily shown that:

Xt+1 = (ϕ+ δ)Xt − δϕXt−1 + ut+1 (5.11)

which implies that the state variable X is indeed an AR(2) process.13 In our application,

we can estimate the innovations in the empirical factors by taking out the autocorrelated

component as in Equation (5.10b) and reconstruct the state variables from these innovation

series assuming the process in Equation (5.11).

13Note that ϵXt = Xt−ϕXt−1 from Equation (5.10a) and we can plug this into Equation (5.10b) to obtain
ϵXt+1 = δ(Xt − ϕXt−1) + ut+1. Plug this back into Equation (5.10a) to get Equation (5.11).
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To understand the structure of coefficients for the infinite order MA representation of a

general AR(2) process, it helps to factorize the lag polynomial. Assuming a state variable

follows a general AR(2) process, we have:

Xt+1 = ϕ1Xt + ϕ2Xt−1 + ϵXt+1 (5.12)

which is equivalent to:

(1− ϕ1L− ϕ2L
2)Xt+1 = ϵXt+1 (5.13)

We can factorize the lag polynomial and obtain:

(1− ϕ1L− ϕ2L
2) = (1− λ1L)(1− λ2L) (5.14)

which implies:

ϕ1 = λ1 + λ2 (5.15)

ϕ2 = −λ1λ2 (5.16)

Using the factorized lag polynomial, we can rewrite Equation (5.13) with

Xt+1 =
ϵXt+1

(1− λ1L)(1− λ2L)
(5.17)

Then, using the partial fraction representation and inverting (1−λL), we obtain the following
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infinite order MA representation for the state variable process:

Xt =

[
λ1

λ1 − λ2

1

1− λ1L
+

λ2

λ2 − λ1

1

1− λ2L

]
ϵXt (5.18)

=
λ1

λ1 − λ2

∞∑
j=0

λj
1ϵ

X
t−j +

λ2

λ2 − λ1

∞∑
j=0

λj
2ϵ

X
t−j (5.19)

=
∞∑
j=0

[
λ1

λ1 − λ2

λj
1 +

λ2

λ2 − λ1

λj
2

]
ϵXt−j (5.20)

=
∞∑
j=0

[
λj+1
1 − λj+1

2

λ1 − λ2

]
ϵXt−j (5.21)

Note that the response of X to a shock ϵ is a sum of two exponentials with two symmetric

parameters λ1 and λ2 in Equation (5.20), i.e., the lag weight for a shock will be the same

even if we switch λ1 and λ2. Under the stationarity condition, i.e., |λi| < 1 for i = 1, 2, the

lag polynomial in Equation (5.21) takes various forms, including oscillating ones. Suppose

an empirical factor fX proxies the innovations to an AR(2) state variable X that predicts

an aggregate measure A. Then, it can be written as:

At+1 = a0 + a1

∞∑
j=0

[
λj+1
1 − λj+1

2

λ1 − λ2

]
fX
t−j + ϵAt+1 (5.22)

Regarding the state variable process with autocorrelated errors, we can rewrite Equation

(5.11) with lag polynomials as follows:

(1− (ϕ+ δ)L+ δϕL2)Xt+1 = (1− ϕL)(1− δL)Xt+1 = ut+1 (5.23)

Thus, in our setup in Equations (5.10a)-(5.10b), the state variable process has the following

infinite order MA representation:

Xt =
∞∑
j=0

[
ϕj+1 − δj+1

ϕ− δ

]
ut−j (5.24)
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Note that the lag weighting structure for ut in Equation (5.24) is exactly same as the

one for ϵXt in Equation (5.21). As discussed in Section 5.2, it is reasonable to assume that

ϕ is positive and close to one. The sign of δ can be different depending on the choice of

empirical factor and the data frequency. It turns out that all the (monthly) empirical factors

examined in this paper have positive but small δ regardless of their statistical significance.

With the stationarity condition, we can limit the ranges of ϕ and δ to be:

0 ≪ ϕ < 1, 0 < δ ≪ 1 (5.25)

For the above ranges of values, all the coefficients to the lag polynomial in Equation (5.24)

are non-negative because ϕj+1 > δj+1 whenever ϕ > δ for all j ≥ 0. The lag weighting scheme

given in Equation (5.24) with the parameter values in the range in Equation (5.25) is either

monotonically decreasing or single-hump shaped.14 This lag structure is well approximated

by the exponential Almon lag polynomial with K = 2 because it also represents either

monotonically decreasing or single-hump shaped weighting scheme as we discussed in Section

5.1. Thus, as in Section 5.2, we look into the following predictive relation:

At+1 = a0 + a1Xt + ϵAt+1 (5.26)

= a0 + a1Sλ

∞∑
j=0

1

Sλ

[
ϕj+1 − δj+1

ϕ− δ

]
ut−j + ϵAt+1 (5.27)

≈ a0 + a1Sλ

J∑
j=0

exp (θ1j + θ2j
2)

Se

ut−j + ϵAt+1 (5.28)

where

Sλ =
∞∑
j=0

[
ϕj+1 − δj+1

ϕ− δ

]
ut−j (5.29)

Note that lag weights are normalized in Equation (5.27) to make it comparable to the MIDAS

14f(x) = (λx
1−λx

2)/(λ1−λ2) is basically positive and single-hump-shaped for x > 0 and 0 < λ1, λ2 < 1. The
f(x) has its max at x∗ = ln(lnλ2/lnλ1)/ln(λ1/λ2). Hence, if x∗ < 1, then lag weights will be monotonically
decreasing.
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regression model in Equation (5.28). The MIDAS regression model in Equation (5.28) does

not allow us to separately estimate a1 and Sλ, but it is sufficient to see the statistical

significance of b1 = a1Sλ to determine whether the state variable predicts the aggregate

measure of the investment opportunity set.

To find out how close the approximation in Equation (5.28) is for Equation (5.27), we

try to match the normalized lag weights in Equation (5.27) for various sets of parameter

values (ϕ and δ, or λ1 and λ2 in general) with the exponential Almon lag weighting scheme

in Equation (5.28). The parameter values θ1 and θ2 are chosen to minimize the mean squared

error between the two lag structures. Figure 2 shows the results of these exercises.

Panel A presents the most probable case under the setup in Equations (5.10a)-(5.10b).

The state variable is very persistent (ϕ = 0.95) as we already discussed in Section 3 and

its persistence is empirically consistent with most of well-known market return predictors.

The δ value chosen (δ = 0.15) is also based on the empirical values from the empirical

factors. Panel A of Figure 2 confirms that the approximation is very good and it supports

our approximation in Equation (5.28) under the assumed processes in Equations (5.10a)-

(5.10b).

The rest of the panels in Figure 2 show the goodness of fit in the lag structure

approximations when the state variable follows a general AR(2) process. For these, we

assume that the coefficient to the first lagged state variable in Equations (5.12) and (5.15)

is positive:

ϕ1 = λ1 + λ2 > 0 (5.30)

which ensures the persistence of the state variable. This condition also implies that all the

lag weights in Equation (5.21) are positive, which sets the lag structure at the same ground

with the exponential Almon lag weighting scheme since the latter can only represent positive

weights. As was briefly discussed, the lag weighting scheme in Equation (5.21) with positive

λs will take one of two forms: monotonically decreasing or single-hump shaped. Panel
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B (λ1 = 0.6, λ2 = 0.3) and C (λ1 = 0.8, λ2 = 0.6) presents these examples and shows the

exponential Almon lag weighting scheme does a very good job at replicating these structures.

Panel D (λ1 = 0.9, λ2 = −0.8) presents the last of its kind under Equation (5.30); one

of the λs is negative but the sum with the other one is positive. In this case, the lag weights

will oscillate as in Panel D. Even in this case, the exponential Almon lag polynomial would

do a pretty good job in reconstructing the state variable since it takes the averages of the

oscillating weights and shocks on which these weights are put are supposed to be white noise.

6 Data and Empirical Results

We empirically investigate if the pricing information of empirically successful factors is

associated with future market risk. We test if these factors are priced because they contain

information about the future changes in the market return. The empirically successful factors

we adopt here are the size, value, momentum, and liquidity. They are all tradable. The data

for the first three factors are from Professor Kenneth French’s website. The liquidity factor

is the traded factor of Pastor and Stambaugh (2003). The factor data is from August 1962 to

December 2014 except for the traded liquidity factor, which is available from January 1968

to December 2014. To match the universe of stocks used to generate the factors, we choose

the return on the value-weighted portfolio of all the stocks on NYSE, AMEX and NASDAQ

as the proxy for the market return.

We reconstruct the state variables from the factors and see if they predict the market

return. To reconstruct the state variable, we need to assume a statistical process for it.

First, we assume that the state variable follows AR(1). As shown in Section 5.2, the

MIDAS regression specification can exactly reconstruct the state variables from the factors

that are supposed to be innovations to the state variables. Second, we allow more general

statistical process (e.g., AR(2) or a more persistent process) for the state variable. The
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flexible weighting scheme of the exponential Almon lag structure of the MIDAS regression

would be a good approximation for the true weighting scheme as shown in Section 5.3. The

latter case also allow us to deal with the autocorrelated factors.

For our empirical study, we use the maximum likelihood estimator (MLE) to estimate

the parameters of the model, which requires the specification of the conditional variance.

We add the GARCH(1,1) process for the market return volatility, and our empirical model

is:

rm,t+1 = a0 + a1Xt + ϵt+1 (6.1)

= b0 + b1

J∑
j=0

exp (θ1j + ...+ θKj
K)

Se

fX
t−j + ϵt+1 (6.2)

ht+1 = ω + αϵ2t + βht (6.3)

where ϵt =
√
ht νt and νt is white noise. Then, it follows:

rm,t+1|Φt ∼ N

(
b0 + b1

J∑
j=0

exp (θ1j + ...+ θKj
K)

Se

fX
t−j, ht+1

)
(6.4)

where Φt is the information set available at time t, and the corresponding log likelihood

function (LLF) would be:

LLF = −T

2
ln(2π)− 1

2

T∑
t=1

ln(ht)−
1

2

T∑
t=1

ϵ2t
ht

(6.5)

We maximize the LLF to estimate the relevant parameters.

Table I provides various statistics for the market return proxy and other traded factors.

For our sample period, the momentum strategy generates the largest profit followed by

the one based on the market liquidity. The first order autocorrelations are estimated and

examined because these factors are supposed to be innovations to the state variable and, if

not, we need to take care of the serial correlation to reconstruct the state variable. Indeed,
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some of the factors show significant serial correlation; the HML has large and statistically

significant first order autocorrelation while the LIQ has second largest serial correlation with

a quite small p-value.

The State Variable Follows an AR(1)

When the state variable follows an AR(1) process and the factors are innovations to

the state variable, we can reconstruct the unknown state variable from the factors as in

Equations (5.8) and (5.9). The empirical model specified in Equations (6.2) and (6.3) with

K = 1 can exactly reconstruct the state variable. The models are fitted with the market

return series from January 1970 to December 2014 and seven years of monthly lags (J = 84)

of each of the factors mentioned except the liquidity one. Due to the data availability issue,

the period February 1975 to December 2014 is used in the case of the traded liquidity factor.

The choice of the length of the lags (i.e., J) may seem arbitrary, but we believe our choice

of J = 84 is enough to cover even a very persistent state process; for the state variable

process with ϕ = 0.95 in Equation (5.5), the weight on the last lag in Equation (5.6) is

0.9584 = 0.013.

Table II shows the estimation results. The key parameter is b1. The statistical

significance of b1 implies that the reconstructed state variable Xt has predictive power over

the market return, which in turn implies that the factor used to reconstruct the state variable

is priced because it has information about the future changes in the market return. Table

II shows that none of the b1s are statistically significant. In addition, none of the θ1s are

statistically significant. For an intuitive understanding of how much of the variation of

the market return can be explained by the reconstructed state variable, pseudo R2 is also

measured as follows:

R̃2 = 1− RSS

TSS
(6.6)

where RSS =
∑T

t=1(rm,t−rm)
2, TSS =

∑T
t=1 ϵ

2
t , and rm = 1/T

∑T
t=1 rm,t. R̃

2 is always very
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low and less than 1%.

More General State Variables

The previous investigation with the AR(1) state variable does not show any statistically

significant relation between the factors’ pricing information and future market risk, and it

seems worthwhile to examine it further, with a more general state variable process.

Given that the unknown state variable Xt follows an AR(2) process, the infinite order

MA representation of state variable is shown in Equation (5.21). Assuming that the empirical

factors are innovations to the state variable, we would like to reconstruct the state variable

from the empirical factors and see if it predicts our choice of the aggregate measure, the

market return, as specified in Equation (5.22). On the other hand, Section 5.3 and Figure 2

show that the exponential Almon lag structure in the MIDAS regression does a very good job

at replicating the lag structure given in Equation (5.21). Hence, we do the corresponding

empirical work with our empirical model in Equation (6.2) and (6.3) with K = 2. The

flexible structure of the exponential Almon lag weighting scheme will also allow us to get a

good approximate weighting structure even for more general state variable process.

Table III presents the empirical results. For a more general state variable, it turns out

b1 for SMB and LIQ are statistically significant with the standard MLE t-stats, but lose

their statistical significance when the t-stats are computed with robust standard errors.

Accordingly, the parameters (θ1 and θ2) for the weighting scheme are not statistically

significant. The pseudo R2 is still low with 1.9% and 0.7% for SMB and LIQ, respectively.

Figure 3 shows the relation between the market return and the state variable reconstructed

from the SMB. It seems the empirical finding confirms that the monthly market return is not

very predictable and the innovation to any predictor would contain very noisy information

about the future changes in the monthly market return.

The extension to a more general state variable case also allows us to deal with serially
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correlated factors as in Equations (5.10a) and (5.10b). The infinite order MA representation

of the state variable process in this case involves the innovation to the factor itself; see

Equations (5.10b) and (5.24). The innovations (ut) to the factors are obtained by the

regression of the following specification:

ft+1 = κ0 + κ1ft + ut+1

Table IV shows the various statistical properties of these innovation series. The correlation

between the innovation and its original factor is very high, with over 99% for most of them,

which implies other statistical properties such as standard deviation, skewness, and kurtosis

are all similar to those from the original factors. The autocorrelation is also measured for

each of the innovation series and we can see the serially correlated components are surely

taken out.

Table V provides the empirical results with the factor innovations as specified in Equation

(5.28), and confirms the previous outcome in Table III. b1s for SMB and LIQ are statistically

significant with the standard MLE t-stat but lose the statistical significance when the robust

standard errors are used to compute the t-stat. The parameters for the weighting function are

not statistically significant either. Table I shows that HML is strongly and LIQ is somewhat

autocorrelated. If the serial correlation has some effect in the estimation for Table II, we

might see different results for HML and LIQ in Table V. The empirical evidence that LIQ

is associated with the market return is strengthened to some extent with higher t-stat for b1

and higher R̃2, but there is still no evidence that HML is related to future changes in market

return.

Applications to Other Aggregate Measures and More

There are other aggregate measures that describe the investment opportunity set in the

ICAPM. Empirical studies on the relationship between these other aggregate measures and
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the traded factors are beyond the scope of this paper, but can be easily implemented in the

same way we did here. In fact, Sohn (2009) runs an empirically similar type of test with the

market volatility and provides strong and robust evidence that the SMB, WML and LIQ

have information about the future changes in the market volatility.

As we discussed in Section 4, the sign of the predictive relation between the aggregate

measure and state variable puts restrictions on the sign of the price of risk for the empirical

factor. These sign relationships could be used to test the empirical factors further within the

ICAPM framework. However, it should be noted that these sign-related restrictions become

far more complicated when multiple aggregate measures are assumed in the version of the

ICAPM adopted and there is a possibility that a state variable predicts multiple aggregate

measures. In fact, for some sets of certain sign combinations across the aggregate measures,

the restriction on the sign of the price of risk does not exist; it can positive, negative or zero.

7 Concluding Comments

Harvey, Liu, and Zhu (2015) show that 240 factors are reported in the literature on the

cross-section of equity returns. It is hard to believe that all 240 factors represent different

systematic risks. To understand the nature of risk these pricing factors represent, it is

necessary to check the theories developed in the field. The ICAPM is still a very popular

choice for this purpose because it can be easily transformed into a linear factor pricing model

and is very accommodating in the choice of state variables. However, the ICAPM is not open

to any state variable and indeed has some restrictions on its choice. Hence, it is crucial to

test these constraints on the state variables when we try to understand the nature of risks

the empirical factors represent in the ICAPM framework.

Unfortunately, there are a number of empirical difficulties in testing and understanding

the empirical factors in the ICAPM framework. We propose a new time-series test that can
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overcome these difficulties and help us understand the nature of risk these empirical factors

represent. Interestingly enough, as we discussed in the last part of Section 3, many empirical

factors can represent the same systematic risk (e.g., unexpected changes in the future market

risk) and still command separate risk premiums. This also help us understand why we find

so many empirically significant pricing factors.

Our empirical work in this paper is carried out with just one choice of aggregate measure:

the market return. There are other prominent aggregate measures like the market volatility,

the maximum Sharpe ratio, or the risk-free rate depending on the underlying assumptions of

the version of the ICAPM. Our choice of aggregate measure is especially challenging in the

sense that the expected component of the monthly market return is very small. Accordingly,

we find little evidence that the risk premiums of the empirical factors are related to investors’

concerns about the future changes in market risk.
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Table I: Summary Statistics for Trading-Strategy Based Factors

The table reports the summary statistics for market return and trading-strategy based factors. These are
monthly returns to some portfolios from August 1962 to December 2014 except for the liquidity factor.
The traded liquidity factor data from Pastor and Stambaugh (2003) are available from January 1968. The
first-order autocorrelation (κ1) was estimated by regressions using the following specification:

ft+1 = κ0 + κ1ft + ut+1

The corresponding t-stats and R2 are reported.

rm SMB HML WML LIQ

Mean 0.00924 0.00226 0.00378 0.00687 0.00433

STD 0.04442 0.03093 0.02841 0.04211 0.03517

Skewness -0.53495 0.53599 -0.00443 -1.41821 0.43770

Kurtosis 5.07130 8.48605 5.61593 14.20293 5.63863

Autocorr 0.07280 0.04656 0.16050 0.05758 0.08044

t-stat (1.83) (1.17) (4.07) (1.44) (1.91)

R2 0.00530 0.00216 0.02576 0.00331 0.00647
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Table II: Reconstruction of the AR(1) State Variables from Factors

The table presents the estimation results for the model specification in Equations (6.2) and (6.3) with K = 1.
The model assumes the AR(1) process for the state variable to which the trading strategy based factors are
the innovations as in Equations (5.8) and (5.9). The parameters are estimated with the MLE by maximizing
the loglikelihood function in Equation (6.5). The models are fitted with market return series from January
1970 to December 2014 and seven years of monthly lags (J = 84) of each of the factors mentioned except for
the liquidity one. Due to the data availability issue, the period from February 1975 to December 2014 is used
in case of the traded liquidity factor. LLF is the value of the loglikelihood function, and R̃2 is the pseudo
coefficient of determination that shows how much of the variance of the market return can be explained by
the variance of the reconstructed state variable from each of the factors. The numbers in parenthesis are the
t-stats.

b0 b1 ω α β θ1 LLF R̃2

SMB 0.00999 0.09154 0.00010 0.12209 0.83717 -15.30263 918.7598 0.0041
(5.81) (1.50) (1.90) (3.83) (23.21) (-0.01)

HML 0.01069 -0.16252 0.00010 0.12215 0.83673 -0.99298 919.2664 0.0062
(6.03) (-1.39) (1.89) (3.82) (22.93) (-0.74)

WML 0.01226 -0.36896 0.00009 0.12131 0.84156 -0.08810 919.0405 0.0070
(5.13) (-1.33) (1.85) (3.91) (24.59) (-1.14)

LIQ 0.01087 -0.03773 0.00007 0.11022 0.86152 -15.37705 825.7719 0.0013
(6.05) (-0.68) (1.74) (3.60) (27.83) (-0.01)
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Table III: Reconstruction of More General State Variables from Factors

The table presents the estimation results for the model specification in Equations (6.2) and (6.3) with K = 2.
The model assumes the AR(2) or more general process for the state variable to which the trading strategy
based factors are the innovations as in Equations (5.27) and (5.28) with u replaced by the factors. The
parameters are estimated with the MLE by maximizing the loglikelihood function in Equation (6.5). The
models are fitted with market return series from January 1970 to December 2014 and seven years of monthly
lags (J = 84) of each of the factors mentioned except for the liquidity one. Due to the data availability issue,
the period from February 1975 to December 2014 is used in case of the traded liquidity factor. LLF is the
value of the loglikelihood function and R̃2 is the pseudo coefficient of determination that shows how much of
the variance of the market return can be explained by the variance of the reconstructed state variable from
each of the factors. The numbers in parenthesis and brackets are the t-stats from the standard errors and
the robust standard errors (Huber sandwich estimator), respectively.

b0 b1 ω α β θ1 θ2 LLF R̃2

SMB 0.00850 0.45578 0.00010 0.12603 0.83396 13.04126 -0.14303 923.6866 0.0190
(4.59) (2.15) (1.84) (3.72) (21.08) (0.66) (-0.67)
[3.45] [1.16] [1.56] [2.91] [14.74] [0.30] [-0.30]

HML 0.00921 0.17553 0.00009 0.11678 0.84733 38.45132 -0.65864 919.3325 0.0069
(5.19) (1.71) (1.85) (3.85) (25.22) (0.88) (-0.88)

WML 0.01237 -0.40208 0.00009 0.12227 0.84150 0.04766 -0.00453 919.2037 0.0071
(5.38) (-1.62) (1.85) (3.94) (24.90) (0.18) (-0.52)

LIQ 0.01013 0.14821 0.00007 0.11545 0.85722 32.24338 -10.47174 827.6666 0.0069
(5.47) (1.98) (1.81) (3.43) (26.46) (0.00) (-0.00)
[4.45] [1.76] [1.85] [2.94] [25.82] [0.16] [-0.16]
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Table IV: Summary Statistics for Innovations to Factors

The table reports the summary statistics for the innovations to the factors, ut in Equations (5.10a) and
(5.10b). These innovations are estimated using the following specification:

ft+1 = κ0 + κ1ft + ut+1

The table presents the correlations between the innovations and the corresponding factors and other regular
summary statistics for these innovation series. It also reports the first-order autocorrelations.

uSMB uHML uWML uLIQ

Corr(f, u) 0.99892 0.98703 0.99834 0.99676

STD 0.03092 0.02806 0.04207 0.03507

Skewness 0.50692 0.00705 -1.36184 0.42726

Kurtosis 8.75935 6.05861 13.77942 5.77388

Autocorr -0.00142 -0.00227 0.00446 0.00804

t-stat (-0.04) (-0.06) (0.11) (0.19)

R2 0.00000 0.00001 0.00002 0.00006
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Table V: Reconstruction of More General State Variables from Factor
Innovations

The table presents the estimation results for the model specifications in Equations (6.2) and (6.3) with
K = 2. The model assumes the AR(2) or a more general process for the state variable to which the trading
strategy based factors are the innovations as in Equations (5.27) and (5.28). In addition, it is assumed the
factors are autocorrelated. The parameters are estimated with the MLE by maximizing the loglikelihood
function in Equation (6.5). The models are fitted with market return series from January 1970 to December
2014 and seven years of monthly lags (J = 84) of each of the factor innovations except for the liquidity
one. Due to the data availability issue, the period from February 1975 to December 2014 is used in case of
innovations to the traded liquidity factor. LLF is the value of the loglikelihood function and R̃2 is the pseudo
coefficient of determination that shows how much of the variance of the market return can be explained by
the variance of the reconstructed state variable from each of the factors. The numbers in parenthesis and
brackets are the t-stats from the standard errors and the robust standard errors (Huber sandwich estimator),
respectively.

b0 b1 ω α β θ1 θ2 LLF R̃2

uSMB 0.00952 0.47694 0.00010 0.12612 0.83385 13.01674 -0.14260 923.6916 0.0190
(5.60) (2.15) (1.85) (3.73) (21.14) (0.67) (-0.68)
[4.91] [1.17] [1.58] [2.93] [14.87] [0.30] [-0.31]

uHML 0.00988 0.20362 0.00009 0.11673 0.84751 36.39428 -0.62030 919.3552 0.0069
(5.74) (1.69) (1.86) (3.86) (25.30) (0.90) (-0.90)

uWML 0.00979 -0.12531 0.00010 0.12128 0.83640 79.64523 -2.23483 920.3791 0.0108
(5.74) (-1.82) (1.89) (3.83) (22.70) (0.56) (-0.55)

uLIQ 0.01077 0.15758 0.00007 0.11546 0.85739 28.23750 -9.09779 827.9041 0.0076
(6.08) (2.03) (1.76) (3.63) (27.05) (0.01) (-0.01)
[5.73] [1.84] [1.72] [3.24] [26.94] [0.14] [-0.14]
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Figure 1: Exponential Almon Lag Weighting Scheme

This figure presents the flexibility of the exponential Almon lag weighting scheme, as defined by Equation
(5.2) by showing various weighting types it can represent. The chosen length (J) of the lags for this example
is 48 and K = 2. The chosen parameters are; (1) θ1 = 0.005, θ2 = 0.001, (2) θ1 = 0.06, θ2 = −0.004, (3)
θ1 = −0.14, θ2 = 0.003, (4) θ1 = −0.05, θ2 = −0.001.
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Figure 2: Lag Structure Approximation

This figure shows lag weighting schemes for the infinite order MA process represented by Equation (5.21)
with various set of λ values: (A) λ1 = 0.95, λ2 = 0.15 (B) λ1 = 0.6, λ2 = 0.3 (C) λ1 = 0.8, λ2 = 0.6 (D)
λ1 = 0.9, λ2 = −0.8. The weights are normalized by their sum such that the sum of all the weights is one as
in Equation (5.27). The exponential Almon lag weighting scheme as in Equation (5.2) with K = 2 is used to
match these lag structures as close as possible. The parameters were chosen to minimize the mean squared
errors. The chosen length (J) of the lags for this example is 48.
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Figure 3: Market Return vs. the State Variable with SMB

This figure shows the market return and the state variable reconstructed with the SMB from Table III.
The state variable is estimated with the model specification in Equations (6.2) and (6.3) with K = 2.
The parameters are estimated with the MLE by maximizing the loglikelihood function in Equation (6.5).
The market return series from January 1970 to December 2014 are fitted with seven years of monthly lags
(J = 84) of the SMB factors.
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