Reputation with Multiple Commitment Types: Continuous-Time

Sambuddha Ghosh and Seokjong Ryu

Shanghai University of Finance and Economics

KAIST seminar

Oct. 10, 2018

1/34

What is Reputation?

Small uncertainty has a Magnifying effect in dynamic games

- Eg. The Chain Store Paradox
 - Complete vs. Incomplete information
 - Weak monopolist could build a reputation as Strong.

Literature

In Discrete-time:

- Kreps and Wilson (1982) and Milgrom and Roberts (1982)
- Fudenberg and Levine (1989, 1992)

In Continuous-time:

- Faingold and Sannikov (2011)
 - 2 players
 - continuous-time: $t\in [0,\infty)$
 - single commitment type

Our paper

Our paper study reputation with:

- continuous-time
- 2 players: one long-lived and a continuum of short-lived
- one-sided incomplete information
- multiple commitment types

Why is this important?

- Slight uncertainty is important for building reputation
- How to rule out all types but one?
 - Multiple vs. Single
- Robustness check
 - Fudenberg and Levine (1989, 1992): enough if there is the Stackelberg type

Contribution

- Multiple types case cannot be reduced to Single type case
- We characterize a PDE for optimal payoff function
 - Find an approximate Markov equilibrium
- We characterize a condition for optimal actions
- We find a stochastic representation of the approximate solution

Model

An infinite-time horizon dynamic game with imperfect monitoring:

• A long-lived large player chooses $a_t \in A$

- For
$$r > 0$$
,

$$\int_0^\infty r e^{-rt} g(a_t, \bar{b}_t) dt$$

• A continuum of infinitely lived small players : $i \in [0, 1]$

- Each i chooses $b^i_t \in B$ with aggregate dist \bar{b}_t
- For r > 0

$$\int_0^\infty r e^{-rt} h(a_t, b_t^i, \bar{b}_t) dt$$

Model (cont.)

イロン 不得 とうほう イロン 二日

8/34

A type space $\{T_0, T_1, ..., T_K\}$ supports small players' prior:

- T_0 is a normal type with belief $\theta_{0,t}$
- For $k \in \{1, ..., K\}$, T_k is a commitment type with belief $\theta_{k,t}$
 - T_k is believed to play a fixed action $a_k^* \in A$ every time

A belief space is defined:

$$\Delta^{K-1} = \left\{ \theta_t = (\theta_{1,t}, ..., \theta_{K,t}) \in \mathbb{R}_+^K \\ \big| \sum_{k=1}^K \theta_{k,t} = 1 - \theta_{0,t} < 1 \text{ and } \theta_{k,t} > 0 \text{ for every } k \in \{1, ..., K\} \right\}$$

Model (cont.)

Public signals $\{X_t\}_{t>0}$ follows the diffusion process:

$$dX_t = \mu(a_t, \bar{b}_t)dt + \sigma(\bar{b}_t)dB_t$$

• $\{B_t\}_{t\geq 0}$ is a d-dimensional Brownian motion with $d \geq K$ • $\mu(a_t, \bar{b}_t) \in \mathbb{R}^d$ and $\sigma(\bar{b}_t) \in \mathbb{R}^{d \times d}$

The continuation value of T_0 at time $t \ge 0$:

$$W_t(S) = \mathbb{E}_t \left\{ \int_t^\infty r e^{-r(s-t)} g(a_s, \bar{b}_s) ds \mid T_0 \right\}$$

where $S = \{(a_s, \bar{b}_s)\}_{s \ge 0}$ is a strategy profile.

Faingold and Sannikov (2011)

A bounded process $\{W_t\}_{t\geq 0}$ is the process of continuation values of the normal type under a public strategy profile $S = \{(a_s, \bar{b}_s)\}_{s\geq 0}$ iff for some $\beta = \{\beta_t\}_{t\geq 0} \in \mathcal{L}$,

$$dW_t = r(W_t - g(a_t, \bar{b}_t))dt + r\beta_t \cdot (dX_t - \mu(a_t, \bar{b}_t)dt)$$

This β determines the reputation factor Z.

Faingold and Sannikov (2011)

$$\{\theta_t\}_{t\geq 0} = \{(\theta_{1,t},...,\theta_{K,t})\}_{t\geq 0}$$
 is consistent with $(a_t,\bar{b}_t)_{t\geq 0}$ iff

(a) $(\theta_{1,0},...,\theta_{K,0}) = p$ for any given prior $p \in \Delta^{K-1}$ (b) for each $k \in \{0, 1, ..., K\}$ and $t \in [0, \infty)$

$$d\theta_{k,t} = \gamma_k(a_t, \bar{b}_t, \theta_t) \cdot \sigma^{-1}(\bar{b}_t) \left(dX_t - \mu^{\theta}(a_t, \bar{b}_t) dt \right)$$

•
$$\gamma_0(a_t, \bar{b}_t, \theta_t) \equiv \theta_{0,t} \sigma^{-1}(\bar{b}_t) \left(\mu(a_t, \bar{b}_t) - \mu^{\theta}(a_t, \bar{b}_t) \right)$$

• $\gamma_k(a_t, \bar{b}_t, \theta_t) \equiv \theta_{k,t} \sigma^{-1}(\bar{b}_t) \left(\mu(a_k^*, \bar{b}_t) - \mu^{\theta}(a_t, \bar{b}_t) \right)$
• $\mu^{\theta}(a_t, \bar{b}_t) \equiv \theta_{0,t} \mu(a_t, \bar{b}_t) + \sum_{k=1}^{K} \theta_{k,t} \mu(a_k^*, \bar{b}_t)$

PDE

By letting $W_t = U(\theta_t)$, on $\overline{\Delta^{K-1}} := \Delta^{K-1} \cup \partial \Delta^{K-1}$,

$$\frac{1}{2}\sum_{i,j=1}^{K}\gamma_i\gamma_j U_{\theta_i\theta_j}(\theta) + \sum_{i=1}^{K}\frac{\gamma_0\gamma_i}{\theta_0}U_{\theta_i}(\theta) - rU(\theta) = -rg, \quad (1)$$

•
$$a := \mathcal{N}_a(\theta, Z) \in A \subset \mathbb{R}$$

•
$$b := \mathcal{N}_b(\theta, Z) \in B \subset \mathbb{R}$$

• $Z(\theta) = Z(\theta, \nabla U(\theta))$ is the reputation factor

This is a 2^{nd} -order quasi-linear PDE

Problem 1

The first problem is the Nonlinearity.

- γ_i is a function of U through the optimal actions

We get around this difficulty by an iterative procedure:

- Pick arbitrary Lipschitz continuous best response functions and transform the quasilinear PDE into an linear elliptic PDE.
- 2 Take the solution of the linear elliptic PDE and use it to derive the new optimal actions.
- **3** Return to Step 1 and iterate.

Problem 2

The second problem is Boundary Conditions

- Need the value attained by U we are solving for on $\partial \Delta^{K-1}$
- The boundary conditions in FS(2011) are much simpler

This problem is resolved by using state-of-the-art techniques in the PDE literature:

- 1 Omit the conditions for those points that are never touched
- **2** Our PDE would never touch the boundary
- **3** Every such PDE possesses a continuous solution

Problem 3

The third problem is Iteration

- Need to ensure that the intermediate U_n at each step is differentiable
- Unfortunately, we know that it is only continuous

This is where we use the technique of 'mollification'

- **1** Use Tietze's extension theorem to extend U_n to \mathbb{R}^K
- 2 Apply mollification to this function on the larger domain
- 3 Obtain a differentiable function that is defined on a set including $\overline{\Delta^{K-1}}$

As $n \to \infty$

We find a convergent subsequence of U_n :

- Apply the Arzela-Ascoli Theorem
- This is a *uniformly* convergent sequence

However, this is not enough:

- Need to show the limit U_n is the solution of the limit PDE
- Apply a version of Trotter-Kato Theorem

As the mollification goes to $\ensuremath{\boldsymbol{0}}$

We show the iterative procedure converges as the mollification goes to zero.

• Apply the Arzela-Ascoli Theorem

Finally, we find the common limit of U_n as both $n \to \infty$ and mollification goes to 0

- This is one convergent sequence: not guarantee uniqueness
- Note that this is an *approximate* solution to the original PDE.

Iteration

- 1. Pick any continuous functions $a_0(\theta)$ and $b_0(\theta)$ on $\overline{\Delta^{K-1}}$.
- 2. Plug them into $\gamma_i(a_0(\theta), b_0(\theta), \theta) = \gamma_i^0(\theta)$ and $g(a_0(\theta), b_0(\theta)) = g^0(\theta)$.
- 3. Solve the linear PDE on $\overline{\Delta^{K-1}}$ to find $U_0(\theta)$ that is continuous on $\overline{\Delta^{K-1}}$.
- 4. Extend $U_0(\theta)$ to a continuous function $U_0(\theta)$ on \mathbb{R}^K .
- 5. Fix $\rho > 0$ and an open subset $\Delta_{\rho} \subset \mathbb{R}^{K}$ such that $\overline{\Delta^{K-1}} \subset \Delta_{\rho}$ and $dist(y, \overline{\Delta^{K-1}}) \leq \rho$ for $y \in \Delta_{\rho}/\Delta^{K-1}$.
- 6. Mollify $U_0(\theta)$ on Δ_{ρ} for $0 < \varepsilon(\rho) < \rho$. Let the mollified function $U_0^{\varepsilon(\rho)}(\theta) \in C^{\infty}(\Delta_{\varepsilon(\rho)}^{K-1})$ where $\overline{\Delta^{K-1}} \subset \Delta_{\varepsilon(\rho)}^{K-1} \subset \Delta_{\rho}$.

Iteration (cont.)

7. Let
$$a_1^{\varepsilon(\rho)}(\theta) = \mathcal{N}_a(\theta, DU_0^{\varepsilon(\rho)}(\theta))$$
 and $b_1^{\varepsilon(\rho)}(\theta) = \mathcal{N}_b(\theta, DU_0^{\varepsilon(\rho)}(\theta)).$

8. Plug them into $\gamma_i(a_1^{\varepsilon(\rho)}(\theta), b_1^{\varepsilon(\rho)}(\theta), \theta) = \gamma_{i,\varepsilon(\rho)}^1(\theta)$ and $g(a_1^{\varepsilon(\rho)}(\theta), b_1^{\varepsilon(\rho)}(\theta)) = g_{\varepsilon(\rho)}^1(\theta).$

:

9. Go to Step 3

Assumptions

- (0) The best-response function of the reputation-builder is single valued.
- (1) Both best response functions $\mathcal{N}_a(\theta, Z)$ and $\mathcal{N}_b(\theta, Z)$ are Lipschitz continuous in the belief-reputation pair (θ, Z) .
- (2) For certain $f(\theta)$ belonging to the class of smooth functions on a compact set, the function $Z(\theta) := Z(\theta, f(\theta))$ is Lipschitz continuous in θ :

$$|Z(\theta_1) - Z(\theta_2)| \le C_{\theta_1, \theta_2} |\theta_1 - \theta_2|$$

where C_{θ_1,θ_2} depends on only θ_1 and θ_2 .

Assumptions (cont.)

- (3) For every $\theta \in \overline{\Delta^{K-1}}$, $\{\mu(a(\theta), b(\theta)), \mu(a_1^*, b(\theta)), ..., \mu(a_K^*, b(\theta))\}$ is linearly independent.
- (4) For any $\theta = (\theta_1, ..., \theta_K) \in \Delta^{K-1}$, and $a(\theta)$ and $b(\theta)$ on Δ^{K-1} ,

$$\sum_{k=1}^{K} \left\{ \frac{\theta_k^2}{\sum_{k=1}^{K} \theta_k^2} - \theta_k \right\} \mu(a_k^*, b(\theta)) \neq \theta_0 \mu(a(\theta), b(\theta))$$

(5) The payoff function g(a, b) is uniformly bounded and Lipschitz continuous with $\underline{g} \leq g \leq \overline{g}$.

Non-attainable Boundary

Proposition 1. Under Condition (4), for any $\theta \in \Delta^{K-1}$,

$$P_{\theta} \{ \theta_t \in \partial \Delta^{K-1} \text{ for some } t > 0 \} = 0$$

at each step of 2^{nd} -order linear elliptic PDE.

- Imperfect monitoring
- Every commitment type is alive on the small player's support
- A Multiple types problem cannot be reduced to a Single type problem

When K = 2

Eq. Action Correspondence

Definition. Let $\mathcal{N}: \Delta^{K-1} \times \mathbb{R} \rightrightarrows A \times \Delta(B)$ be a best response correspondence defined by:

$$\mathcal{N}(\theta_t, \mathbf{Z}) \equiv \left\{ (\mathcal{N}_a(\theta_t, \mathbf{Z}), \mathcal{N}_b(\theta_t, \mathbf{Z})) = (a, b) : \\ a \in \operatorname{argmax}_{a' \in A} g(a', \bar{b}) + (\sigma(\bar{b})\sigma(\bar{b})^T)^{-1} \cdot \mathbf{Z}_t^T \cdot L(a, a', \{\mu_k\}_{k=1}^K, \bar{b}) \\ b \in \operatorname{argmax}_{b' \in B} \theta_{0,t} h(a, b', \bar{b}) + \sum_{i=1}^K \theta_{i,t} h(a_i^*, b', \bar{b}) \ \forall b \in \operatorname{supp} \bar{b} \right\}$$

- *a* is a *dynamic* optimal action
- b is a static optimal action

Eq. Action Correspondence (cont.)

where

•
$$Z_t^T \equiv -\frac{1}{r} \left(\theta_{1,t} U_{\theta_{1,t}}, \dots, \theta_{K,t} U_{\theta_{K,t}} \right) \cdot M(\theta)$$

with $M(\theta) = \begin{pmatrix} (1 - \theta_{1,t}) & \theta_{2,t} & \cdots & \theta_{K,t} \\ \theta_{1,t} & (1 - \theta_{2,t}) & \cdots & \theta_{K,t} \\ \vdots & \vdots & \ddots & \vdots \\ \theta_{1,t} & \theta_{2,t} & \cdots & (1 - \theta_{K,t}) \end{pmatrix}$
• $L(a, a', \{\mu_k\}_{k=1}^K, \overline{b}) = \begin{pmatrix} (\mu_1 - \mu(a, \overline{b})) \cdot \mu(a', \overline{b}) \\ \vdots \\ (\mu_K - \mu(a, \overline{b})) \cdot \mu(a', \overline{b}) \end{pmatrix}$

<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > 34

Existence of Approximate Solution

Theorem 1. Under Assumptions, for any r > 0, there exists an approximate Markov equilibrium payoff function $U(\cdot)$ on $\overline{\Delta}^{K-1}$ to the PDE (1):

$$\frac{1}{2}\sum_{i,j=1}^{K}\gamma_i\gamma_j U_{\theta_i\theta_j}(\theta) + \sum_{i=1}^{K}\frac{\gamma_0\gamma_i}{\theta_0}U_{\theta_i}(\theta) - rU(\theta) = -rg,$$

•
$$a(\theta) := \mathcal{N}_a(\theta, Z(\theta)) \in A \subset \mathbb{R}$$

• $b(\theta) := \mathcal{N}_b(\theta, Z(\theta)) \in B \subset \mathbb{R}$
where $U(\cdot) = \lim_{\rho \to 0} \lim_{n \to \infty} U_{n,\varepsilon(\rho)}(\cdot)$ for the solution, $U_{n,\varepsilon(\rho)}(\cdot)$, at the n^{th} step PDE with $\varepsilon(\rho)$ -mollification.

Equilibrium Degeneracy

Let $\theta_0^* \equiv (0, ..., 0) \in \Delta^{K-1}$ and $\theta_k^* \equiv (0, ..., 0, 1, 0, ..., 0) \in \Delta^{K-1}$ for any $k \in \{1, ..., K\}$ that T_k is a Stackelberg type.

Propositioin 2 Suppose that small players are certain that the large player is either a normal type T_0 or a Stackelberg type T_j for some $j \in \{1, ..., K\}$. Then, for any r > 0,

$$U(\theta_j^*) \in g\big(\mathcal{N}(\theta_j^*, r)\big)$$

where U is the approximate Markov equilibrium payoff.

Construction of Restricted Belief Spaces

For sufficiently small $\delta > 0$, suppose that $D^{\delta} \subset \Delta^{K-1}$ is a convex and connected open subset with boundary ∂D^{δ} such that

(a)
$$\cup_{\delta>0} D^{\delta} = \Delta^{K-1}$$
 and $D^{\delta_1} \subset D^{\delta_2}$ for any $\delta_1 > \delta_2$
(b) $\partial D^{\delta}|_{\Omega_{\delta}} = \partial \Delta^{K-1}|_{\Omega_{\delta}}$
(c) $\partial \Delta^{\epsilon}_{\delta} \equiv \partial D^{\delta} \setminus \Omega_{\delta} \subset \cup_{k \in \{0,1,\dots,K\}} \{\theta_k > 1 - \delta\}$

where Ω_{δ} is the subset of $\partial \overline{\Delta^{K-1}}$ such that $\delta < \theta_k < 1 - \delta$ for some $k \in \{0, 1, ..., K\}$ and $\theta_l = 0$ for some $l \neq k$.

A restricted belief space when K = 2

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 のへの 29/34

A reduced PDE

For each $\delta>0,\ r>0,$ and $\rho>0,$ consider the reduced limit $(as\ n\to\infty)$ problem on $D^{\delta}:$

$$\frac{1}{2}\sum_{i,j=1}^{K}\gamma_{i}^{\rho}\gamma_{j}^{\rho}U_{\theta_{i}\theta_{j}}(\theta) + \sum_{i=1}^{K}\frac{\gamma_{0}^{\rho}\gamma_{i}^{\rho}}{\theta_{0}}U_{\theta_{i}}(\theta) - rU(\theta) = -rg^{\rho}, \quad (2)$$

$$U^{\delta}(\theta) = g^{\rho} \left(\mathcal{N}(\theta_0^*, r) \right) \text{ on } \partial \Delta_{\delta}^{\epsilon} \cap \{\theta_0 > 1 - \delta\}$$
$$U^{\delta}(\theta) = g^{\rho} \left(\mathcal{N}(\theta_1^*, r) \right) \text{ on } \partial \Delta_{\delta}^{\epsilon} \cap \{\theta_1 > 1 - \delta\}$$

 $U^{\delta}(\theta) = g^{\rho} \left(\mathcal{N}(\theta_m^*, r) \right) \text{ on } \partial \Delta_{\delta}^{\epsilon} \cap \{ \theta_m > 1 - \delta \}$

where $\{1,...,m\} \subset \{1,...,K\}$ is a set of Stackelberg types.

A reduced problem when $\mathsf{K}=2$

Stochastic representation on D^{δ}

Proposition 3. Under Assumptions, the payoff $U_{\varepsilon(\rho)}^{\delta}(\theta)$ that is a solution to PDE (2) has the following form on D^{δ} : for any $\theta \in D^{\delta}$, r > 0, and $\varepsilon(\rho) > 0$,

$$U_{\varepsilon(\rho)}^{\delta}(\theta) = \mathbb{E}_{\theta} \left[g(\theta_{\tau^{\delta}}) \exp\{-r\tau^{\delta}\} \right] + r \mathbb{E}_{\theta} \int_{0}^{\tau^{\delta}} g(\theta_{s}) \exp\{-rs\} ds$$

where $\tau^{\delta} \equiv \inf \{t > 0 \mid \theta_t \notin D^{\delta}\}$. Furthermore, $U^{\delta}_{\varepsilon(\rho)}(\theta)$ satisfies the followings boundary conditions : for any $j \in \{0, 1, ..., K\}$,

$$U^{\delta}_{\varepsilon(\rho)}(\theta_{\tau^{\delta}}) = g^{\rho} \left(\mathcal{N}(\theta_{j}^{*}, r) \right)$$

on $\partial \Delta_{\delta}^{\epsilon} \cap \{\theta_j > 1 - \delta\}$

Stochastic representation on Δ^{K-1}

Theorem 2. Under Assumptions, the $\varepsilon(\rho)$ -Markov equilibrium payoff $U_{\varepsilon(\rho)}(\theta)$ on Δ^{K-1} is given by: for any given $\theta \in \Delta^{K-1}$ and r > 0,

$$U_{\varepsilon(\rho)}(\theta) = \mathbb{E}_{\theta} \left[g(\theta_{\tau}) \exp\{-r\tau\} \right] + r \mathbb{E}_{\theta} \int_{0}^{\tau} g(\theta_{s}) \exp\{-rs\} ds$$

where $\tau \equiv \lim_{\delta \to 0} \tau^{\delta}$.

Furthermore, for each j-th vertex $\theta_j^* \in \partial M$,

$$\lim_{\theta \to \theta_j^*} U_{\varepsilon(\rho)}(\theta) = g^{\rho} \left(\mathcal{N}(\theta_j^*, r) \right)$$

33 / 34

Conclusion

With multiple commitment types,

- Characterize the optimal equation for the Eq. payoff
- Find an approx. Markov equilibrium
- Find a stochastic representation of the approx. Eq. Payoff

Ongoing research

- What about the convergence of the stochastic representation?
- What about the approximate equilibrium actions?

Future research

• Numerical Analysis?